Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328034

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD). CT imaging with contrast agents is commonly used for visualizing the gastrointestinal (GI) tract in UC patients. CT is a common imaging modality for evaluating IBD, especially in patients with acute abdominal pain presenting to emergency departments. CT's major limitation lies in its lack of specificity for imaging UC, as the commonly used agents are not well-suited for inflamed areas. Recent studies gastrointestinal tract (GIT) in UC. Further systemic research is needed to explore novel contrast agents that can specifically image disease processes in this disease setting.

2.
Diagnostics (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766602

RESUMO

A key process in the development of atherosclerotic plaques is the recruitment of monocytes into the artery wall. Using spectral photon-counting computed tomography we examine whether monocyte deposition within the artery wall of ApoE-/- mouse can be detected. Primary mouse monocytes were labelled by incubating them with 15 nm gold nanoparticles coated with 11-mercaptoundecanoic acid The monocyte uptake of the particle was confirmed by electron microscopy of the cells before injection into 6-week-old apolipoprotein E deficient (ApoE-/-) mouse that had been fed with the Western diet for 10 weeks. Four days following injection, the mouse was sacrificed and imaged using a MARS spectral photon counting computed tomography scanner with a spectral range of 7 to 120 KeV with five energy bins. Imaging analysis showed the presence of X-ray dense material within the mouse aortic arch which was consistent with the spectral characteristic of gold rather than calcium. The imaging is interpreted as showing the deposition of gold nanoparticles containing monocytes within the mouse aorta. The results of our study determined that spectral photon-counting computed tomography could provide quantitative information about gold nanoparticles labelled monocytes in voxels of 90 × 90 × 90 µm3. The imaging was consistent with previous micro-CT and electron microscopy of mice using the same nanoparticles. This study demonstrates that spectral photon-counting computed tomography, using a MARS small bore scanner, can detect a fundamental atherogenic process within mouse models of atherogenesis. The present study demonstrates the feasibility of spectral photon-counting computed tomography as an emerging molecular imaging modality to detect atherosclerotic disease.

3.
Nanotheranostics ; 7(2): 176-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793350

RESUMO

Background: The objective of this study was to demonstrate that synchrotron K-edge subtraction tomography (SKES-CT) can simultaneously track therapeutic cells and their encapsulating carrier, in vivo, in a rat model of focal brain injury using a dual-contrast agent approach. The second objective was to determine if SKES-CT could be used as a reference method for spectral photon counting tomography (SPCCT). Methods: Phantoms containing different concentrations of gold and iodine nanoparticles (AuNPS/INPs) were imaged with SKES-CT and SPCCT to assess their performances. A pre-clinical study was performed in rats with focal cerebral injury which intracerebrally received AuNPs-labelled therapeutic cells encapsulated in a INPs-labelled scaffold. Animals were imaged in vivo with SKES-CT and back-to-back with SPCCT. Results: SKES-CT revealed to be reliable for quantification of gold and iodine, whether alone or mixed. In the preclinical model, SKES-CT showed that AuNPs remained at the site of cell injection, while INPs expanded within and/or along the lesion border, suggesting dissociation of both components in the first days post-administration. Compared to SKES-CT, SPCCT was able to correctly locate gold, but not completely located iodine. When SKES-CT was used as reference, SPCCT gold quantification appeared very accurate both in vitro and in vivo. Iodine quantification by SPCCT was also quite accurate, albeit less so than for gold. Conclusion: We here provide the proof-of-concept that SKES-CT is a novel method of choice for performing dual-contrast agent imaging in the context of brain regenerative therapy. SKES-CT may also serve as ground truth for emerging technologies such as multicolour clinical SPCCT.


Assuntos
Lesões Encefálicas , Iodo , Nanopartículas Metálicas , Ratos , Animais , Meios de Contraste , Ouro , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/terapia
4.
ACS Appl Mater Interfaces ; 13(51): 60852-60864, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34914872

RESUMO

Cerium oxide nanoparticles (CeONP), having potent antioxidant properties, are highly promising nanomaterials for treatment of diseases in which oxidative stress from excessive reactive oxygen species (ROS) plays a critical role in the pathogenesis and progression. However, most previously reported CeONP formulations were not efficiently cleared from the body, precluding their clinical translation. Herein, we report ultrasmall CeONP that can mitigate activation of macrophages and subsequent acute inflammation. It is found that these CeONP can effectively scavenge reactive species, inhibit macrophage activation, and minimize their recruitment and infiltration to the inflammation site, which lead to alleviation of edema and pain hypersensitivity. Moreover, we demonstrate that CeONP can be effectively excreted from the body within 24 h of systemic administration, minimizing long-term toxicity concerns. Altogether, our findings suggest that CeONP may be explored as both antioxidant and anti-inflammatory agents that can reduce acute inflammation with a better safety profile than existing nanoparticles.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Materiais Biocompatíveis/farmacologia , Cério/farmacologia , Inflamação/tratamento farmacológico , Nanopartículas/química , Doença Aguda , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antioxidantes/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Cério/química , Ácido Cítrico/química , Edema/tratamento farmacológico , Edema/metabolismo , Adjuvante de Freund , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Dor/tratamento farmacológico , Dor/metabolismo
5.
Med Phys ; 48(1): 273-286, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33170953

RESUMO

PURPOSE: As preparation for future positron emission tomography (PET)/dual-energy computed tomography (DECT)T imaging modality and new possible clinical applications, the study aimed to evaluate the utility of clinically available spectral results from a DECT system for improving attenuation corrections of PET acquisitions in the presence of iodinated contrast media. The dependence of the accuracy of PET quantification values, reconstructed with conventional and spectral-based attenuation corrections, was examined as a function of the amount of iodine content and x-ray radiation exposure. METHODS: Measurements were performed on commercial PET/CT and DECT systems, using a semi-anthropomorphic phantom with seven centrifuge tubes in its bore. Five different configurations of tube contents were scanned by both PET/CT and DECT. With the aim of mimicking clinically observed concentrations, in all phantom configurations the center tube contained a high concentration of radionuclide while the peripheral tubes contained a lower concentration of radionuclide. Iodine content was incrementally increased between phantom configurations by replacing iodine-free tubes with tubes that contained the original radionuclide concentration within a 10 mg/ml iodine dilution. DECT-based attenuation correction maps were generated by scaling electron density spectral results into corresponding 511 keV photon linear attenuation coefficients. RESULTS: Mean SUV values obtained from the nominal PET reconstruction, using conventional CT images as input for the attenuation correction, demonstrate a monotonic increase of 8.6% when the water and radionuclide mixtures were replaced by iodine, water, and radionuclide (same level of activity) mixture. Mean SUV values obtained from the DECT-based reconstruction, in which the attenuation correction utilizes electron density values as input, demonstrate different, more stable behavior across all iodine insert configurations, with a standard deviation to mean ratio of less than 1%. This observed behavior was independent of the area size used for measurement. A minor radiation dose dependency of the electron density values (below 0.5%) was observed. This resulted in consistent (iodine independent) PET quantification behavior, which persisted even at the lowest radiation dose levels tested in our experiment, that is, 25% of the radiation dose utilized for CT acquisition in the clinical PET/CT protocol. CONCLUSIONS: Utilization of DECT-generated electron density estimations for attenuation correction benefit PET quantification consistency in the presence of iodine and at nominal and low DECT radiation exposure levels. The ability to correctly account for iodinated contrast media in PET acquisitions will allow the development of new clinical applications that rely on the quantitative capabilities of spectral CT technologies and modern PET systems.


Assuntos
Meios de Contraste , Iodo , Elétrons , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
6.
Chem Mater ; 32(1): 381-391, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33005071

RESUMO

Numerous formulations of nanoparticle-based X-ray computed tomography (CT) contrast agents made of heavy metal elements are under investigation for their ability to provide improved CT imaging. Thus far, most experimental nanoparticle-based CT contrast agents have been developed with atoms of a single element. However, inspired by the composites formed from multiple elements used in radioprotective garments, we hypothesized that contrast agents made of several elements whose K-edge energies are spaced out in the high photon flux region could achieve high, broadband X-ray attenuation across the energies used in X-ray source spectra. Herein, we synthesized sub-5 nm core inorganic nanoparticles containing gold, tantalum, and cerium, and encapsulated them in polymeric nanoparticles to form polymetal nanoparticles (PMNP). We found that PMNP with multiple payload elements generate higher and more stable CT contrast than contrast agents made from a single contrast generating material, demonstrating the potential benefits of incorporating multiple suitable elements as CT contrast payloads.

7.
ACS Nano ; 14(8): 10187-10197, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32692538

RESUMO

Computed tomography (CT) is an X-ray-based medical imaging technique commonly used for noninvasive gastrointestinal tract (GIT) imaging. Iodine- and barium-based CT contrast agents are used in the clinic for GIT imaging; however, inflammatory bowel disease (IBD) imaging is challenging since iodinated and barium-based CT agents are not specific for sites of inflammation. Cerium oxide nanoparticles (CeNP) can produce strong X-ray attenuation due to cerium's k-edge at 40.4 keV but have not yet been explored for CT imaging. In addition, we hypothesized that the use of dextran as a coating material on cerium oxide nanoparticles would encourage accumulation in IBD inflammation sites in a similar fashion to other inflammatory diseases. In this study, therefore, we sought to develop a CT contrast agent, i.e., dextran-coated cerium oxide nanoparticles (Dex-CeNP) for GIT imaging with IBD. We synthesized Dex-CeNP, characterized them using various analytical tools, and examined their in vitro biocompatibility, CT contrast generation, and protective effect against oxidative stress. In vivo CT imaging was done with both healthy mice and a dextran sodium sulfate induced colitis mouse model. Dex-CeNP's CT contrast generation and accumulation in inflammation sites were compared with iopamidol, an FDA approved CT contrast agent. Dex-CeNP was found to be protective against oxidative damage. Dex-CeNP produced strong CT contrast and accumulated in the colitis area of large intestines. In addition, >97% of oral doses were cleared from the body within 24 h. Therefore, Dex-CeNP can be used as a potential CT contrast agent for imaging GIT with IBD while protecting against oxidative damage.


Assuntos
Cério , Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Animais , Colite/induzido quimicamente , Colite/diagnóstico por imagem , Meios de Contraste , Dextranos , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos
8.
Nanotheranostics ; 4(3): 129-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483519

RESUMO

Rationale & aim: Various types of cell therapies are currently under investigation for the treatment of ischemic stroke patients. To bridge the gap between cell administration and therapeutic outcome, there is a need for non-invasive monitoring of these innovative therapeutic approaches. Spectral photon counting computed tomography (SPCCT) is a new imaging modality that may be suitable for cell tracking. SPCCT is the next generation of clinical CT that allows the selective visualization and quantification of multiple contrast agents. The aims of this study are: (i) to demonstrate the feasibility of using SPCCT to longitudinally monitor and quantify therapeutic cells, i.e. bone marrow-derived M2-polarized macrophages transplanted in rats with brain damage; and (ii) to evaluate the potential of this approach to discriminate M2-polarized macrophages from their encapsulating scaffold. Methods: Twenty one rats received an intralesional transplantation of bone marrow-derived M2-polarized macrophages. In the first set of experiments, cells were labeled with gold nanoparticles and tracked for up to two weeks post-injection in a monocolor study via gold K-edge imaging. In the second set of experiments, the same protocol was repeated for a bicolor study, in which the labeled cells are embedded in iodine nanoparticle-labeled scaffold. The amount of gold in the brain was longitudinally quantified using gold K-edge images reconstructed from SPCCT acquisition. Animals were sacrificed at different time points post-injection, and ICP-OES was used to validate the accuracy of gold quantification from SPCCT imaging. Results: The feasibility of therapeutic cell tracking was successfully demonstrated in brain-damaged rats with SPCCT imaging. The imaging modality enabled cell monitoring for up to 2 weeks post-injection, in a specific and quantitative manner. Differentiation of labeled cells and their embedding scaffold was also feasible with SPCCT imaging, with a detection limit as low as 5,000 cells in a voxel of 250 × 250 × 250 µm in dimension in vivo. Conclusion: Multicolor SPCCT is an innovative translational imaging tool that allows monitoring and quantification of therapeutic cells and their encapsulating scaffold transplanted in the damaged rat brain.


Assuntos
Lesões Encefálicas , Encéfalo , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Rastreamento de Células , Estudos de Viabilidade , Masculino , Fótons , Ratos , Ratos Sprague-Dawley
9.
J Am Chem Soc ; 142(17): 7783-7794, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32271558

RESUMO

Gold is a highly useful nanomaterial for many clinical applications, but its poor biodegradability can impair long-term physiological clearance. Large gold nanoparticles (∼10-200 nm), such as those required for long blood circulation times and appreciable tumor localization, often exhibit little to no dissolution and excretion. This can be improved by incorporating small gold particles within a larger entity, but elimination may still be protracted due to incomplete dispersion of gold. The present study describes a novel gold nanoparticle formulation capable of environmentally triggered decomposition. Ultrasmall gold nanoparticles are coated with thiolated dextran, and hydrophobic acetal groups are installed through direct covalent modification of the dextran. This hydrophobic exterior allows gold to be densely packed within ∼150 nm polymeric micelles. Upon exposure to an acidic environment, the acetal groups are cleaved and the gold nanoparticles become highly water-soluble, leading to destabilization of the micelle. Within 24 h, the ultrasmall water-soluble gold particles are released from the micelle and readily dispersed. Micelle degradation and gold nanoparticle dispersion was imaged in cultured macrophages, and micelle-treated mice displayed progressive physiological clearance of gold, with >85% elimination from the liver over three months. These particles present a novel nanomaterial formulation and address a critical unresolved barrier for clinical translation of gold nanoparticles.


Assuntos
Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Humanos , Concentração de Íons de Hidrogênio
10.
Bioconjug Chem ; 31(2): 303-314, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31682405

RESUMO

Gold nanoparticles (AuNP) have been extensively developed as contrast agents, theranostic platforms, and probes for molecular imaging. This popularity has yielded a large number of AuNP designs that vary in size, shape, surface functionalization, and assembly, to match very closely the requirements for various imaging applications. Hence, AuNP based probes for molecular imaging allow the use of computed tomography (CT), fluorescence, and other forms of optical imaging, photoacoustic imaging (PAI), and magnetic resonance imaging (MRI), and other newer techniques. The unique physicochemical properties, biocompatibility, and highly developed chemistry of AuNP have facilitated breakthroughs in molecular imaging that allow the detection and imaging of physiological processes with high sensitivity and spatial resolution. In this Review, we summarize the recent advances in molecular imaging achieved using novel AuNP structures, cell tracking using AuNP, targeted AuNP for cancer imaging, and activatable AuNP probes. Finally, the perspectives and current limitations for the clinical translation of AuNP based probes are discussed.


Assuntos
Ouro/análise , Nanopartículas Metálicas/análise , Imagem Molecular/métodos , Imagem Óptica/métodos , Animais , Rastreamento de Células/instrumentação , Rastreamento de Células/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/instrumentação , Imagem Óptica/instrumentação , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
11.
Sci Rep ; 9(1): 14912, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624285

RESUMO

Computed tomography (CT) is one of the most commonly used clinical imaging modalities. There have recently been many reports of novel contrast agents for CT imaging. In particular, the development of gold nanoparticles (AuNP) as CT contrast agents is a topic of intense interest. AuNP have favorable characteristics for this application such as high payloads of contrast generating material, strong X-ray attenuation, excellent biocompatibility, tailorable surface chemistry, and tunable sizes and shapes. However, there have been conflicting reports on the role of AuNP size on their contrast generation for CT. We therefore sought to extensively investigate the AuNP size-CT contrast relationship. In order to do this, we synthesized AuNP with sizes ranging from 4 to 152 nm and capped them with 5 kDa m-PEG. The contrast generation of AuNP of different sizes was investigated with three clinical CT, a spectral photon counting CT (SPCCT) and two micro CT systems. X-ray attenuation was quantified as attenuation rate in Hounsfield units per unit concentration (HU/mM). No statistically significant difference in CT contrast generation was found among different AuNP sizes via phantom imaging with any of the systems tested. Furthermore, in vivo imaging was performed in mice to provide insight into the effect of AuNP size on animal biodistribution at CT dose levels, which has not previously been explored. Both in vivo imaging and ex vivo analysis with inductively coupled plasma optical emission spectroscopy (ICP-OES) indicated that AuNP that are 15 nm or smaller have long blood circulation times, while larger AuNP accumulated in the liver and spleen more rapidly. Therefore, while we observed no AuNP size effect on CT contrast generation, there is a significant effect of size on AuNP diagnostic utility.


Assuntos
Meios de Contraste/química , Ouro/química , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Feminino , Ouro/administração & dosagem , Ouro/farmacocinética , Injeções Intravenosas , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Modelos Animais , Tamanho da Partícula , Imagens de Fantasmas , Distribuição Tecidual
12.
Chem Mater ; 31(19): 7845-7854, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33005070

RESUMO

Significant effort has been focused on developing renally-clearable nanoparticle agents since efficient renal clearance is important for eventual clinical translation. Silver sulfide nanoparticles (Ag2S-NP) have recently been identified as contrast agents for dual energy mammography, computed tomography (CT) and fluorescence imaging and probes for drug delivery and photothermal therapy with good biocompatibility. However, most Ag2S-NP reported to date are not renally excretable and are observed in vivo to accumulate and remain in the reticuloendothelial system (RES) organs, i.e. liver and spleen, for a long time, which could negatively impact their likelihood for translation. Herein, we present renally-clearable, 3.1 nm Ag2S-NP with 85% of the injected dose (ID) being excreted within 24 hours of intravenous injection, which is amongst the best clearance of similarly sized nanoparticles reported thus far (mostly between 20-75% of ID). The urinary excretion and low RES accumulation of these nanoparticles in mice were indicated by in vivo CT imaging and biodistribution analysis. In summary, these ultrasmall Ag2S-NP can be effectively eliminated via urine and have high translational potential for various biomedical applications.

13.
Sci Rep ; 8(1): 12119, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108247

RESUMO

Spectral photon-counting computed tomography (SPCCT) is a rapidly emerging imaging modality that provides energy-dependent information on individual x-ray photons, leading to accurate material decomposition and simultaneous quantification of multiple contrast generating materials. Development of SPCCT-specific contrast agents is needed to overcome the issues with currently used iodinated contrast agents, such as difficulty in differentiation from calcified structures, and yield SPCCT's full promise. In this study, the contrast generation of different elements is investigated using a prototype SPCCT scanner based on a modified clinical CT system and suitable elements for novel contrast agent development for SPCCT imaging are identified. Furthermore, nanoparticles were synthesized from tantalum as a proof of concept spectral photon-counting CT agent and tested for their in vitro cytotoxicity and contrast generation to provide insight into the feasibility of nanoparticle contrast agent development from these elements. We found that gadolinium, ytterbium and tantalum generate high contrast in spectral photon-counting CT imaging and may be suitable elements for contrast agent development for this modality. Our proof of concept results with tantalum-based nanoparticles underscore this conclusion due to their detectability with spectral photon-counting CT, as well as their biocompatibility.


Assuntos
Meios de Contraste/toxicidade , Desenvolvimento de Medicamentos , Fótons , Tomografia Computadorizada por Raios X/métodos , Animais , Técnicas de Cultura de Células/métodos , Meios de Contraste/síntese química , Estudos de Viabilidade , Gadolínio/química , Células Hep G2 , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Imagens de Fantasmas , Tantálio/química , Tomografia Computadorizada por Raios X/instrumentação , Testes de Toxicidade/métodos , Itérbio/química
14.
J Clin Invest ; 128(3): 1106-1124, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457790

RESUMO

Intake of hemoglobin by the hemoglobin-haptoglobin receptor CD163 leads to a distinct alternative non-foam cell antiinflammatory macrophage phenotype that was previously considered atheroprotective. Here, we reveal an unexpected but important pathogenic role for these macrophages in atherosclerosis. Using human atherosclerotic samples, cultured cells, and a mouse model of advanced atherosclerosis, we investigated the role of intraplaque hemorrhage on macrophage function with respect to angiogenesis, vascular permeability, inflammation, and plaque progression. In human atherosclerotic lesions, CD163+ macrophages were associated with plaque progression, microvascularity, and a high level of HIF1α and VEGF-A expression. We observed irregular vascular endothelial cadherin in intraplaque microvessels surrounded by CD163+ macrophages. Within these cells, activation of HIF1α via inhibition of prolyl hydroxylases promoted VEGF-mediated increases in intraplaque angiogenesis, vascular permeability, and inflammatory cell recruitment. CD163+ macrophages increased intraplaque endothelial VCAM expression and plaque inflammation. Subjects with homozygous minor alleles of the SNP rs7136716 had elevated microvessel density, increased expression of CD163 in ruptured coronary plaques, and a higher risk of myocardial infarction and coronary heart disease in population cohorts. Thus, our findings highlight a nonlipid-driven mechanism by which alternative macrophages promote plaque angiogenesis, leakiness, inflammation, and progression via the CD163/HIF1α/VEGF-A pathway.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aterosclerose/metabolismo , Inflamação/metabolismo , Macrófagos/citologia , Neovascularização Patológica , Receptores de Superfície Celular/metabolismo , Adulto , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Doença das Coronárias/metabolismo , Vasos Coronários/metabolismo , Progressão da Doença , Feminino , Hemoglobinas/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infarto do Miocárdio/metabolismo , Estresse Oxidativo , Permeabilidade , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética , Transdução de Sinais
15.
Bioconjug Chem ; 28(6): 1581-1597, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28485976

RESUMO

Efforts to develop novel cell-based therapies originated with the first bone marrow transplant on a leukemia patient in 1956. Preclinical and clinical examples of cell-based treatment strategies have shown promising results across many disciplines in medicine, with recent advances in immune cell therapies for cancer producing remarkable response rates, even in patients with multiple treatment failures. However, cell-based therapies suffer from inconsistent outcomes, motivating the search for tools that allow monitoring of cell delivery and behavior in vivo. Noninvasive cell imaging techniques, also known as cell tracking, have been developed to address this issue. These tools can allow real-time, quantitative, and long-term monitoring of transplanted cells in the recipient, providing insight on cell migration, distribution, viability, differentiation, and fate, all of which play crucial roles in treatment efficacy. Understanding these parameters allows the optimization of cell choice, delivery route, and dosage for therapy and advances cell-based therapy for specific clinical uses. To date, most cell tracking work has centered on imaging modalities such as MRI, radionuclide imaging, and optical imaging. However, X-ray computed tomography (CT) is an emerging method for cell tracking that has several strengths such as high spatial and temporal resolution, and excellent quantitative capabilities. The advantages of CT for cell tracking are enhanced by its wide availability and cost effectiveness, allowing CT to become one of the most popular clinical imaging modalities and a key asset in disease diagnosis. In this review, we will discuss recent advances in cell tracking methods using X-ray CT in various applications, in addition to predictions on how the field will progress.


Assuntos
Rastreamento de Células/métodos , Neoplasias/diagnóstico por imagem , Rastreamento de Células/tendências , Meios de Contraste , Humanos , Nanopartículas , Neoplasias/patologia , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/tendências
16.
Bioconjug Chem ; 28(1): 260-269, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28095688

RESUMO

With advances in cell therapies, interest in cell tracking techniques to monitor the migration, localization, and viability of these cells continues to grow. X-ray computed tomography (CT) is a cornerstone of medical imaging but has been limited in cell tracking applications due to its low sensitivity toward contrast media. In this study, we investigate the role of size and surface functionality of gold nanoparticles for monocyte uptake to optimize the labeling of these cells for tracking in CT. We synthesized gold nanoparticles (AuNP) that range from 15 to 150 nm in diameter and examined several capping ligands, generating 44 distinct AuNP formulations. In vitro cytotoxicity and uptake experiments were performed with the RAW 264.7 monocyte cell line. The majority of formulations at each size were found to be biocompatible, with only certain 150 nm PEG functionalized particles reducing viability at high concentrations. High uptake of AuNP was found using small capping ligands with distal carboxylic acids (11-MUA and 16-MHA). Similar uptake values were found with intermediate sizes (50 and 75 nm) of AuNP when coated with 2000 MW poly(ethylene-glycol) carboxylic acid ligands (PCOOH). Low uptake values were observed with 15, 25, 100, and 150 nm PCOOH AuNP, revealing interplay between size and surface functionality. Transmission electron microscopy (TEM) and CT performed on cells revealed similar patterns of high gold uptake for 50 nm PCOOH and 75 nm PCOOH AuNP. These results demonstrate that highly negatively charged carboxylic acid coatings for AuNP provide the greatest internalization of AuNP in monocytes, with a complex dependency on size.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Monócitos/citologia , Tomografia Computadorizada por Raios X , Humanos , Microscopia Eletrônica de Transmissão , Monócitos/metabolismo , Tamanho da Partícula
17.
Biomaterials ; 102: 87-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27322961

RESUMO

Gold nanoparticles (AuNP) have been proposed for many applications in medicine. Although large AuNP (>5.5 nm) are desirable for their longer blood circulation and accumulation in diseased tissues, small AuNP (<5.5 nm) are required for excretion via the kidneys. We present a novel platform where small, excretable AuNP are encapsulated into biodegradable poly di(carboxylatophenoxy)phosphazene (PCPP) nanospheres. These larger nanoparticles (Au-PCPP) can perform their function as contrast agents, then subsequently break down into harmless byproducts and release the AuNP for swift excretion. Homogeneous Au-PCPP were synthesized using a microfluidic device. The size of the Au-PCPP can be controlled by the amount of polyethylene glycol-polylysine (PEG-PLL) block co-polymer in the formulation. Synthesis of Au-PCPP nanoparticles and encapsulation of AuNP in PCPP were evaluated using transmission electron microscopy and their biocompatibility and biodegradability confirmed in vitro. The Au-PCPP nanoparticles were found to produce strong computed tomography contrast. The UV-Vis absorption peak of Au-PCPP can be tuned into the near infrared region via inclusion of varying amounts of AuNP and controlling the nanoparticle size. In vitro and in vivo experiments demonstrated the potential of Au-PCPP as contrast agents for photoacoustic imaging. Therefore, Au-PCPP nanoparticles have high potency as contrast agents for two imaging modalities, as well as being biocompatible and biodegradable, and thus represent a platform with potential for translation into the clinic.


Assuntos
Meios de Contraste/química , Ouro/química , Nanopartículas Metálicas/química , Compostos Organofosforados/química , Técnicas Fotoacústicas/métodos , Polímeros/química , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular , Humanos , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...